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Introduction

Provided in the following pages is an expository thesis on Riemann-Stieltjes Integration. The

goals of this thesis are to define the Riemann-Stieltjes Integral, and explain the properties

of this integral. There are many proofs provided in this paper, some of which are original

proofs, some are modifications of proofs of similar properties and others are from the

sources used to prepare this paper. All of these proofs will help explain to the reader the

calculation, limitations and applications of the Riemann-Stieltjes Integral. The process

of Riemann Integration which is taught in calculus classes is a specific case of Riemann-

Stieltjes Integration, thus many of the same terms and properties used to describe Riemann

Integration will be discussed in this paper. Riemann-Stieltjes integration is useful in the

areas of Physics, and Statistics, but of limited use in Stochastic Processes.
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Definitions

The following definitions will be used to define and explain Riemann-Stieltjes Integration or

in the properties and proofs of Riemann-Stieltjes Integration.

Let [a,b], a < b, be a given closed and bounded interval in R. A partition P of [a,b] is

a finite set of points P = {x0,x1, . . . ,xn} such that a = x0 < x1 < .. . < xn = b. There is no

requirement that the points xi be equally spaced.

A partition P∗ of [a,b] is a refinement of P if P⊂ P∗

The norm of a partition P is the length of the largest subinterval of P and is denoted

by ‖P‖.

Let E be a nonempty subset of R that is bounded above. An element α ∈ R is called the

least upper bound or supremum of E if

(i) α is an upper bound of E, and

(ii) if β ∈ R satisfies β < α , then β is not an upper bound of E.

Let E be a nonempty subset of R that is bounded below. An element γ ∈ R is called the

greatest lower bound or infimum of E if

(i) γ is a lower bound of E, and

(ii) if β ∈ R satisfies β > γ , then β is not a lower bound of E.
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A real-valued function f defined on a set E is bounded on E if there exists a constant

M such that | f (x)| ≤M for all x ∈ E.

A subset O of R is open if every point of O is an interior point of O. A subset F of R is

closed if Fc is open.

Let p ∈ R and let δ > 0. The set Nδ (p) = {x ∈ R : |x− p| < δ} is called a δ -

neighborhood of the point p.

Suppose E ⊂ R and f is a real-valued function with domain E. The function f has

a local minimum at a point q ∈ E if there exists a δ > 0 such that f (q) ≤ f (x) for all

x ∈ E ∩Nδ (p).

Let f be a real-valued function defined on an interval I, f is monotone increasing on I

if f (x)≤ f (y) for all x,y ∈ I with x < y.

Let E be a subset of R and f a real-valued function with domain E. The function f is

continuous at a point p∈E, if for every ε > 0, there exists a δ > 0 such that | f (x)− f (p)|< ε

for all x ∈ E with |x− p| < δ . The function f is continuous on E if and only if f is

continuous at every point p ∈ E.

Let E be a subset of R and f : E→R. The function f is uniformly continuous on E, if

given ε > 0, there exists a δ > 0 such that | f (x)− f (y)|< ε for all x,y ∈ E with |x−y|< δ .
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Riemann-Stieltjes Integration vs. Riemann Integration

Presented here is the definition and notation of the Riemann-Stieltjes Integral. Let α be a

monotone increasing function on [a,b], and let f be a bounded real-valued function on [a,b].

For each partition P= {x0,x1, . . . ,xn} of [a,b] set

∆αi = α(xi)−α(xi−1), i = 1, . . . ,n.

Since α is monotone increasing, ∆αi ≥ 0 for all i. Let

mi = inf{ f (t) : t ∈ [xi−1,xi]},

Mi = sup{ f (t) : t ∈ [xi−1,xi]}.

The upper Riemann-Stieltjes sum of f with respect to α and the partition P, is defined by

U(P, f ,α) =
n

∑
i=1

Mi ∆αi.

The lower Riemann-Stieltjes sum of f with respect to α and the partition P, is defined by

L(P, f ,α) =
n

∑
i=1

mi ∆αi.
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By the given conditions and defintions mi ≤Mi and ∆αi ≥ 0, we know

L(P, f ,α)≤ U(P, f ,α).

Let P be any partition of [a,b]. Then the following sum can be found

n

∑
i=1

∆αi = (α(x1)−α(x0))+(α(x2)−α(x1))+ ...+(α(xn)−α(xn−1))

= α(xn)−α(x0)

= α(b)−α(a).

Since Mi ≤M for all i and ∆αi ≥ 0,

n

∑
i=1

Mi ∆αi ≤
n

∑
i=1

M ∆αi = M
n

∑
i=1

∆αi = M[α(a)−α(b)],

n

∑
i=1

mi ∆αi ≥
n

∑
i=1

m∆αi = m
n

∑
i=1

∆αi = m[α(a)−α(b)].

Therefore

U(P, f ,α)≤M[α(a)−α(b)]

and

L(P, f ,α)≥ m[α(a)−α(b)].

Thus, if m≤ f (x)≤M for all x ∈ [a,b], then

m[α(b)−α(a)]≤ L(P, f ,α)≤ U(P, f ,α)≤M[α(b)−α(a)]
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for all partitions P of [a,b].

The upper integral of f with respect to α over [a,b], denoted
∫ b

a f dα and the lower

integral of f with respect to α over [a,b], denoted
∫ b

a f dα are defined∫ b
a f dα = inf{U(P, f ,α) : P is a partition of [a,b]},∫ b
a f dα = sup{L(P, f ,α) : P is a partition of [a,b]}. A function f is said to be Riemann-

Stieltjes integrable with respect to α on [a,b] if

∫ b

a
f dα =

∫ b

a
f dα

when f is a bounded real-valued function on [a,b], and α is a monotone increasing function

on [a,b].

The definition of the Riemann Integral is reviewed here to allow the Riemann-Stieltjes

and Riemann Integrals to be compared.

Let [a,b], a < b, be a given closed and bounded interval in R. Let P be a partition of

[a,b]. Given

∆xi = xi− xi−1,

which is equal to the length of the interval [xi−1,xi]. Let

mi = inf{ f (t) : t ∈ [xi−1,xi]},

Mi = sup{ f (t) : t ∈ [xi−1,xi]}.

Since f is bounded, by the least upper bound property, the quantites mi and Mi exist in R. If

f is a continuous function on [a,b], then for each i there exist points ti,si ∈ [xi−1,xi] such

that Mi = f (ti) and mi = f (si). The upper sum U(P, f ) for the partition P and function f is
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defined by

U(P, f ) =
n

∑
i=1

Mi ∆xi.

The lower sum for the partition P and function f is defined by

L(P, f ) =
n

∑
i=1

mi ∆xi.

Since mi ≤ Mi for all i = 1, . . . ,n, we know L(P, f ) ≤ U(P, f ) for any partition of P of

[a,b]. Let P be any partition of [a,b]. Since Mi ≤M and mi ≥ m for all i = 1, . . . ,n,

U(P, f ) =
n

∑
i=1

Mi ∆xi ≤
n

∑
i=1

M(xi− xi−1) = M(b−a).

L(P, f ) =
n

∑
i=1

mi ∆xi ≥
n

∑
i=1

m(xi− xi−1) = m(b−a).

Thus, if m≤ f (t)≤M for all t ∈ [a,b], then

m(b−a)≤ L(P, f )≤ U(P, f )≤M(b−a)

for all partitions P of [a,b].

The Riemann-Stieltjes Integral is a modification of the Riemann Integral where the

function f is integrated with respect to a function α instead of with respect to x, which

means in the Riemann-Stieltjes Integral ∆α is used versus the use of ∆x for the Riemann

Integral. When evaluating the Riemann-Stieltjes Integral the upper and lower sums are

found by multiplying Mi and mi, respectively, by ∆αi where

∆αi = α(xi)−α(xi−1)
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To evaluate the Riemann Integral the upper and lower sums are found by multiplying Mi

and mi by ∆xi. When α(x) is defined to equal x then the Riemann-Stieltjes Integral and

the Riemann Integral are equivalent. Let α(x) = x then α(xi) = xi and α(xi−1) = xi−1.

Therefore

∆α(xi) = α(xi)−α(xi−1) = xi− xi−1 = ∆xi.
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Properties and Theorems of Riemann-Stieltjes Integration

Theorem 4.1 ([4]). Let f be a bounded real-valued function on [a,b], and α a monotone

increasing function on [a,b]. Then

∫ b

a
f dα ≤

∫ b

a
f dα.

Proof. Given that P∗ is a refinement of the partition P then

L(P, f ,α)≤ L(P∗, f ,α)≤ U(P∗, f ,α)≤ U(P, f ,α)

Let P and Q be any two partitions of [a,b] where

P 6= Q.

Then P∪Q is a refinement of partitions P and Q. By the above inequality

L(P, f ,α)≤ L(P∪Q, f ,α)≤ U(P∪Q, f ,α)≤ U(Q, f ,α)

Thus

L(P, f ,α)≤ U(Q, f ,α)
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for any partitions P,Q. Hence

∫ b

a
f dα = sup{L(P, f ,α)} ≤ U(Q, f ,α)

for any partition Q. And

∫ b

a
f dα = inf{U(Q, f ,α)} ≥ L(P, f ,α)

Therefore

∫ b

a
f dα ≤

∫ b

a
f dα.

Example 4.2. Fix a < c≤ b. Let Ic(x) = I(x− c) be the indicator function at c defined by

Ic(x) =

 0 x < c

1 x≥ c

If f is a bounded real-valued function on [a,b] that is continuous at c, a < c≤ b, then f is

integrable with respect to Ic and

∫ b

a
f dIc =

∫ b

a
f (x)dI(x− c) = f (c)

Proof. Let P = {x0,x1, . . . ,xn} be any partition of [a,b]. Since a < c ≤ b, there exists an

index k, 1≤ k ≤ n, such that xk−1 < c≤ xk. Thus

∆αk = α(xk)−α(xk−1) = 1−0 = 1
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and ∆αi = 0 for all i 6= k. Therefore

U(P, f ,α) = Mk∆k = Mk = sup{ f (t) : xk−1 ≤ t ≤ xk}

and

L(P, f ,α) = mk∆k = mk = inf{ f (t) : xk−1 ≤ t ≤ xk}

Since f is continuous at c, given ε > 0 there exists a δ > 0 such that

f (c)− ε < f (t)< f (c)+ ε

for all t ∈ [a,b] with |t− c|< δ . If P is any partition of [a,b] with

‖P‖< δ

then

f (c)− ε ≤ mk ≤Mk ≤ f (c)+ ε

Therefore

f (c)− ε ≤ L(P, f ,α)≤ U(P, f ,α)≤ f (c)+ ε

As a consequence

f (c)− ε ≤
∫ b

a
f dα ≤

∫ b

a
f dα ≤ f (c)+ ε.

Since ε > 0 was arbitrary the upper and lower integrals of f are equal and thus f is integrable

with respect to α on [a,b] with
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∫ b

a
f dα = f (c).

Example 4.3. The function

f (x) =

 1, x ∈Q

0, x /∈Q

is not integrable with respect to any nonconstant monotone increasing function α .

Proof. Suppose α is monotone increasing on [a,b], a < b, with α(a) 6= α(b). If P =

{x0,x1, . . . ,xn} is any partition of [a,b] then mi = 0 and Mi = 1, since the rational numbers

are dense, for all i = 1,2, . . . ,n. Therefore

L(P, f ,α) = 0

and

U(P, f ,α) =
n

∑
i=1

∆αi = α(b)−α(a).

Thus f is not integrable with respect to alpha.

Theorem 4.4 ([4]). Let α be a monotone increasing function on [a,b]. A bounded real-

valued function f is Riemann-Stieltjes integrable with respect to α on [a,b] if and only if

for all ε > 0 there exists a P of [a,b] such that

U(P, f ,α)−L(P, f ,α)< ε.
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Furthermore if P is a partition of [a,b] for the which the aboved stated inequality holds true,

then the inequality holds for all refinements of P.

Proof. Suppose

U(P, f ,α)−L(P, f ,α)< ε

holds for a given ε > 0. Then

0≤
∫ b

a
f dα−

∫ b

a
f dα ≤ U(P, f ,α)−L(P, f ,α)< ε.

Thus f is integrable on [a,b]. Suppose f is integrable on [a,b]. Let ε > 0. There exist

partitions P1, and P2 of [a,b] such that

U(P2, f ,α)−
∫ b

a
f dα < ε/2

and

∫ b

a
f dα−L(P1, f ,α)< ε/2.

Let

P= P1∪P2.

Then

U(P, f ,α)≤ U(P2, f ,α)<
∫ b

a
f dα + ε/2 < L(P1, f ,α)+ ε ≤ L(P, f ,α)+ ε

Therefore

U(P, f ,α)−L(P, f ,α)< ε.
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If Q is any refinement of P then

U(Q, f ,α)≤ U(P, f ,α)

and

L(P, f ,α)≤ L(Q, f ,α)

Therefore

0≤ U(Q, f ,α)−L(Q, f ,α)≤ U(P, f ,α)−L(P, f ,α)< ε

Thus the inequality holds for any refinement Q of P.

Lemma: If both f (x) and α(x) are discontinuous from the same side at a point c then

the functions are not Riemann-Stieltjes integrable with respect to α for the interval [a,b]

where c ∈ [a,b]

Proof. By contradiction. Suppose that f is Reimann-Stieltjes integrable with respect to α .

By Theorem 4.4, given a fixed ε > 0 there exists a partition P1 of [a,b] such that

U(P1, f ,α)−L(P1, f ,α)< ε

P1 is a partition of [a,b] and c ∈ [a,b], let P∗ = P1 ∪ c. Thus P∗ is a refinement of P1.

Choose ε f > 0 such that for all δ f > 0 there is an x f such that

|x f − c|< δ f and | f (x f )− f (c)| ≥
√

ε f .

Choose εα > 0 such that for all δα > 0 there is an xα such that

|xα − c|< δα and |α(xα)−α(c)| ≥
√

εα .
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Since a < c < b, there exists an index k, 1≤ k ≤ n, such that

xk−1 < c < xk

Let ε∗ = inf{ε f ,εα} Choose ε = ε∗ for δ ∗ = min(xn− c,c− xn−1) so there is an x∗ such

that |x∗f −c|< δ ∗ and | f (x∗f )− f (c)| ≥
√

ε∗ and |x∗α−c|< δ ∗ and |α(x∗α)−α(c)| ≥
√

ε∗. Therefore

U(P∗, f ,α)−L(P∗, f ,α)< ε.

By definition

U(P∗, f ,α) =
n

∑
i=1

Mi ∆αi

and

L(P∗, f ,α) =
n

∑
i=1

mi ∆αi

which means
n

∑
i=1

Mi ∆αi−
n

∑
i=1

mi ∆αi < ε

Thus
n

∑
i=1

Mi ∆αi =
k−1

∑
i=1

Mi ∆αi +Mk ∆αk +
n

∑
i=k

Mi ∆αi

and
n

∑
i=1

mi ∆αi =
k−1

∑
i=1

mi ∆αi +mk ∆αk +
n

∑
i=k

mi ∆αi

Therefore

(
k−1

∑
i=1

Mi ∆αi +Mk ∆αk +
n

∑
i=k

Mi ∆αi

)
−

(
k−1

∑
i=1

mi ∆αi +mk ∆αk +
n

∑
i=k

mi ∆αi

)
< ε

Where ∆αk =α(xk)−α(xk−1) since α is monotone increasing |α(xk)−α(xk−1)| ≥ |α(x∗)−

α(c)|. The upper sums minus the lower sums is positive due to the fact that the upper sums



www.manaraa.com

16

are greater than the lower sums, which was shown in the previous proof.

n

∑
i=1

Mi∆αi−
n

∑
i=1

mi∆αi ≥Mk∆αk−mk∆αk = ∆αk(Mk−mk)≥
√

ε∗
√

ε∗ ≥ ε

Which is a contradiction, thus f is not integrable with respect to α when both f and α are

not continuous from the same side at c.

Theorem 4.5 ([4]). Let f be a real-valued function on [a,b] and α a monotone increasing

function on [a,b].

a) If f is continuous on [a,b], then f is integrable with respect to α on [a,b].

b) If f is monotone on [a,b] and α is continuous on [a,b], then f is integrable with

respect to α on [a,b].

Proof. Proof of part (a) Let ε > 0. Choose η > 0 such that

[α(b)−α(a)]η < ε.

The function f is closed and bounded on [a,b] and f is continuous on [a,b] then by the

Uniform Continuity Theorem f is uniformly continuous on [a,b]. Thus there exists a η such

that | f (x)− f (t)|< η for all x, t in [a,b] with |x− t|< η . Choose a partition P of [a,b] such

that ∆xi < η for all i = 1,2, . . . ,n. Then by the inequality

| f (x)− f (t)|< η

Mi−mi ≤ η for all i = 1,2, . . . ,n. Therefore

U(P, f ,α)−L(P, f ,α) =
n

∑
i=1

(Mi−mi)∆αi ≤ η

n

∑
i=1

∆αi = η(α(b)−α(a))< ε
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For this n and corresponding partition P,

U(P, f ,α)−L(P, f ,α)< ε.

Therefore f is integrable on [a,b].

Proof. Proof of part (b) For any positive integer n choose a partition P= {x0,x1, . . . ,xn} of

[a,b] such that

∆αi = α(xi)−α(xi−1) =
1
n
[α(b)−α(a)]

Since α is continuous, such a choice is possible by the intermediate value theorem. Assume

f is monotone increasing on [a,b]. Then

Mi = f (xi) and mi = f (xi−1). Therefore

U(P, f ,α)−L(P, f ,α) =
n

∑
i=1

[ f (xi)− f (xi−1)]∆αi

=
[α(b)−α(a)]

n

n

∑
i=1

( f (xi)− f (xi−1))

=
[α(b)−α(a)]

n
[ f (b)− f (a)]

Given ε > 0, choose n ∈N such that

[α(b)−α(a)]
n

[ f (b)− f (a)]< ε.

For this n and corresponding partition P,

U(P, f ,α)−L(P, f ,α)< ε.
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Properties of the Riemann-Stieltjes Integral are given below.

For a given monotone increasing function α on [a,b], R(α) denotes the set of bounded

real-valued functions f on [a,b] that are Riemann-Stieltjes integrable with respect to α .

Theorem 4.6 ([4]). 1. If f ,g ∈ R(α) the sum f +g and c f are in R(α) for every c ∈ R

and

(a)
∫ b

a ( f +g)dα =
∫ b

a f dα +
∫ b

a gdα

(b)
∫ b

a c f dα = c
∫ b

a f dα

2. If f ∈ R(αi), i = 1,2 then f ∈ R(α1 +α2) and

∫ b

a
f d(α1 +α2) =

∫ b

a
f dα1 +

∫ b

a
f dα2

3. If f ∈ R(α) and a < c < b then f is integrable with respect to α on [a,c] and [c,b]

with

∫ b

a
f dα =

∫ c

a
f dα +

∫ b

c
f dα

4. If f ,g ∈ R(α) with f (x)≤ g(x) for all x ∈ [a,b], the

∫ b

a
f dα ≤

∫ b

a
gdα

5. If | f (x)| ≤M on [a,b] and f ∈ R(α) then | f | ∈ R(α) and

∣∣∣∣∫ b

a
f dα

∣∣∣∣≤ ∫ b

a
| f |dα ≤M[α(b)−α(a)]



www.manaraa.com

19

Proof. Proof of part (1a) Let P= {x0, . . . ,xn} be a partition of [a,b]. For each i = 1, . . . ,n,

let

Mi( f ) = sup{ f (t) : t ∈ [xi−1,xi]},

Mi(g) = sup{g(t) : t ∈ [xi−1,xi]}.

Then

f (t)+g(t)≤Mi( f )+Mi(g)

for all t ∈ [xi−1,xi] and thus

sup{ f (t)+g(t) : t ∈ [xi−1,xi]} ≤Mi( f )+Mi(g)

Therefore, for all partitions P of [a,b]

U(P, f +g,α)≤ U(P, f ,α)+U(P,g,α)

Given ε > 0. Since f ,g ∈ R(α), there exist partitions P f and Pg of [a,b] such that

U(P f , f ,α)<
∫ b

a
f dα +

ε

2

and

U(Pg,g,α)<
∫ b

a
gdα +

ε

2
.
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Let Q= P f ∪Pg. Q is a refinement of both P f and Pg, Thus

U(Q, f ,α)<
∫ b

a
f dα +

ε

2

and

U(Q,g,α)<
∫ b

a
gdα +

ε

2

U(Q, f +g,α)≤ U(Q, f ,α)+U(Q,g,α)<
∫ b

a
f dα +

∫ b

a
gdα + ε.

Therefore,

∫ b

a
( f +g)dα <

∫ b

a
f dα +

∫ b

a
gdα + ε.

Since the above holds for all ε > 0,

∫ b

a
( f +g)dα ≤

∫ b

a
f dα +

∫ b

a
gdα.

Now the same logic will be used with the lower sum. For each i = 1, . . . ,n, let

mi( f ) = inf{ f (t) : t ∈ [xi−1,xi]},

mi(g) = inf{g(t) : t ∈ [xi−1,xi]}.

Then mi( f )+mi(g)≤ f (t)+g(t) for all t ∈ [xi−1,xi] and thus

mi( f )+mi(g)≤ in f{ f (t)+g(t) : t ∈ [xi−1,xi]}

Therefore, for all partitions P of [a,b]
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L(P, f ,α)+L(P,g,α)≤ L(P, f +g,α)

Given ε > 0. Since f ,g ∈ R(α), there exist partitions P f and Pg of [a,b] such that

L(P f , f ,α)>
∫ b

a
f dα +

ε

2

and

L(Pg,g,α)>
∫ b

a
gdα +

ε

2
.

Let

Q= P f ∪Pg.

Q is a refinement of both P f and Pg,

L(Q, f ,α)>
∫ b

a
f dα +

ε

2

L(Q,g,α)>
∫ b

a
gdα +

ε

2

L(Q, f +g,α)≥ L(Q, f ,α)+L(Q,g,α)>
∫ b

a
f dα +

∫ b

a
gdα + ε.

Therefore,

∫ b

a
( f +g)dα >

∫ b

a
f dα +

∫ b

a
gdα + ε.

Since the above holds for all ε > 0,
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∫ b

a
( f +g)dα ≥

∫ b

a
f dα +

∫ b

a
gdα.

Thus

∫ b

a
f dα +

∫ b

a
gdα + ε ≤

∫ b

a
( f +g)dα ≤

∫ b

a
( f +g)dα ≤

∫ b

a
f dα +

∫ b

a
gdα

Thus the upper and lower integrals of
∫ b

a ( f +g)dα are equal to each other and the quantity∫ b
a f dα +

∫ b
a gdα .

Proof. Proof of part (1b) By the given c f are in R(α) for every c ∈ R which means that

sup{L(P,c f ,α)}=
∫ b

a
c f dα =

∫ b

a
c f dα = inf{U(P,c f ,α)}

L(P,c f ,α) =
n

∑
i=1

cmi∆αi = c
n

∑
i=1

mi∆αi = c(L(P, f ,α))

Thus

c
∫ b

a
f dα = c(sup{L(P, f ,α)) = sup{L(P,c f ,α) =

∫ b

a
c f dα

Therefore

c
∫ b

a
f dα =

∫ b

a
c f dα

The same logic is applied to upper integral.

U(P,c f ,α) =
n

∑
i=1

cMi∆αi = c
n

∑
i=1

Mi∆αi = c(U(P, f ,α))

Thus
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c
∫ b

a
f dα = c(inf{U(P, f ,α)) = inf{U(P,c f ,α) =

∫ b

a
c f dα

Therefore

c
∫ b

a
f dα =

∫ b

a
c f dα

So

c
∫ b

a
f dα =

∫ b

a
c f dα =

∫ b

a
c f dα = c

∫ b

a
f dα

Thus

∫ b

a
c f dα = c

∫ b

a
f dα

Proof. Proof of part (2) Since f ∈ R(αi), given ε > 0, there exists a partition Pi, i = 1,2

such that

U(Pi, f ,αi)−L(P, f ,αi)<
ε

2

Let P= P1∪P2. Since P is a refinement of both P1 and P2 the inequality

U(P, f ,α)−L(P, f ,α)<
ε

2

holds true for P. Thus since

∆(α1 +α2)i = ∆(α1)i +∆(α2)i
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for all i = 1, . . . ,n,

U(P, f ,α1 +α2)−L(P, f ,α1 +α2) = U(P, f ,α1)−L(P, f ,α1)+U(P, f ,α2)−L(P, f ,α2)

<
ε

2
+

ε

2
= ε

Therefore f ∈ R(α1 +α2).

And for any partition P of [a,b]

L(P, f ,α1 +α2) = L(P, f ,α1)+L(P, f ,α2)

≤
∫ b

a
f dα1 +

∫ b

a
f dα2

≤ U(P, f ,α1)+U(P, f ,α2)

= L(P, f ,α1 +α2)

Thus since f ∈ R(α1 +α2),

∫ b

a
f d(α1 +α2) =

∫ b

a
f dα1 +

∫ b

a
f dα2.

Proof. Proof of part (3) By the given f ∈ R there exists a partition P1 of [a,b] such that

U(P1, f ,α)−L(P1, f ,α)< ε

Let the partition P2 = P1∪{c} By the fact that P2 is a refinement of P1

U(P2, f ,α)−L(P2, f ,α)< ε
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Let Pa
2 be the section of partition of P2 from [a,c] and Pb

2 be the section of partition of P2

from [c,b].

U(P2, f ,α) = U(Pa
2, f ,α)+U(Pb

2, f ,α)

L(P2, f ,α) = L(Pa
2, f ,α)+L(Pb

2, f ,α)

ε > U(P2, f ,α)−L(P2, f ,α) = U(Pa
2, f ,α)+U(Pb

2, f ,α)− (L(Pa
2, f ,α)+L(Pb

2, f ,α))

ε > (U(Pa
2, f ,α)−L(Pa

2, f ,α))+(U(Pb
2, f ,α)+L(Pb

2, f ,α))

By the fact that the upper sum > lower sum

(U(Pa
2, f ,α)−L(Pa

2, f ,α))≥ 0

and

(U(Pb
2, f ,α)+L(Pb

2, f ,α))≥ 0

which means

(U(Pa
2, f ,α)−L(Pa

2, f ,α)< ε

and

(U(Pb
2, f ,α)−L(Pb

2, f ,α)< ε
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Therefore f is integrable with respect to α on [a,c] and [c,b]. Now show that

∫ b

a
f dα =

∫ c

a
f dα +

∫ b

c
f dα.

As stated above we know

U(P2, f ,α) = U(Pa
2, f ,α)+U(Pb

2, f ,α)

L(P2, f ,α) = L(Pa
2, f ,α)+L(Pb

2, f ,α)

By definition ∫ b

a
f dα = inf{U(P, f ,α) : P}

inf{U(P2, f ,α) : P}= inf{U(Pa
2, f ,α) : P}+ inf{U(Pb

2, f ,α) : P}=
∫ c

a
f dα +

∫ b

c
f dα

and

∫ b

a
f dα = sup{L(P, f ,α) : P}

sup{L(P2, f ,α) : P}= sup{L(Pa
2, f ,α) : P}+ sup{L(Pb

2, f ,α) : P}=
∫ c

a
f dα +

∫ b

c
f dα

Therefore

∫ b

a
f dα =

∫ c

a
f dα +

∫ b

c
f dα.
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Proof. Proof of part (4) By the given f (x) ≤ g(x). Let P = {x0, . . . ,xn} be a partition of

[a,b]. For each i = 1, . . . ,n, let

mi( f ) = inf{ f (t) : t ∈ [xi−1,xi]},

and

mi(g) = inf{g(t) : t ∈ [xi−1,xi]}.

By the given mi( f )≤ mi(g) Therefore, for all partitions P of [a,b]

L(P, f ,α)≤ L(P,g,α)

So as the

lim
||P||→0

L(P, f ,α)≤ lim
||P||→0

L(P,g,α)

Since f ,g ∈ R(α) then

∫ b

a
f dα = lim

||P||→0
L(P, f ,α)≤ lim

||P||→0
L(P,g,α) =

∫ b

a
f gdα

Proof. Proof of part (5) Suppose f ∈ R(α) and P= {x0,x1, . . . ,xn} is a partition of [a,b].

For each i = 1,2, . . . ,n let

Mi( f ) = sup{ f (t) : t ∈ [xi−1,xi]},

M∗i ( f ) = sup{| f (t)| : t ∈ [xi−1,xi]}.
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mi( f ) = inf{ f (t) : t ∈ [xi−1,xi]},

m∗i ( f ) = inf{| f (t)| : t ∈ [xi−1,xi]}.

If t,x ∈ [xi−1,xi] then

|| f (t)|− | f (x)|| ≤ | f (t)− f (x)| ≤Mi−mi

Thus M∗i −m∗i ≤Mi−mi for all i = 1,2, . . . ,n and as a consequence

U(P, | f |,α)+L(P, | f |,α)≤ U(P, f ,α)+L(P, f ,α)

Therefore | f | ∈ R(α). Choose c =±1 such that

c
∫ b

a
f dα ≥ 0.

Then

|
∫ b

a
f dα|= c

∫ b

a
f dα =

∫ b

a
c f dα ≤

∫ b

a
| f |dα ≤M

∫ b

a
dα = M[α(b)−α(a)].

Theorem 4.7. Mean Value Theorem([4]). Let f be a continuous real-valued function on

[a,b] and α a monotone increasing function on [a,b]. Then there exists a c ∈ [a,b] such that

∫ b

a
f dα = f (c)[α(b)−α(a)]
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Proof. Let m and M denote the minimum and maximum of f on [a,b] respectively. Then

m[α(b)−α(a)]≤
∫ b

a
f dα ≤M[α(b)−α(a)]

If α(b)−α(a) = 0 then any c∈ [a,b] will work. If α(b)−α(a) 6= 0 then by the Intermediate

Value Theorem there exists a c ∈ [a,b] such that

f (c) =
1

α(b)−α(a)

∫ b

a
f dα

Theorem 4.8. Integration by Parts Formula([4]). Suppose α and β are monotone increasing

functions on [a,b].

a) Then α ∈ R(β ) if and only if β ∈ R(α).

b) If this is the case,

∫ b

a
α dβ = α(b)β (b)−α(a)β (a)−

∫ b

a
βdα.

Proof. Proof of part (a) For any partition P of [a,b]

U(P,α,β ) = α(b)β (b)−α(a)β (a)−L(P,β ,α)

and

L(P,α,β ) = α(b)β (b)−α(a)β (a)−U(P,β ,α).

By the subtraction of these 2 equations.

U(P,α,β )−L(P,α,β ) = U(P,β ,α)−L(P,β ,α)
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If α ∈ R(β ) then

U(P,α,β )−L(P,α,β )< ε

and due to the fact that these 2 quantities are equal if

U(P,α,β )−L(P,α,β )< ε

then

U(P,β ,α)−L(P,β ,α)< ε

as well. This means both are Riemann Stieltjes Integrable.

Proof. Proof of part (b) Furthermore if β ∈ R(α) then given ε > 0, there exists a partition

P of [a,b] such that

L(P,β ,α)>
∫ b

a
β dα− ε.

Hence

∫ b

a
α dβ ≤ U(P,α,β )< α(b)β (b)−α(a)β (a)−

∫ b

a
β dα + ε.

Since the above holds for any ε > 0

∫ b

a
α dβ ≤ α(b)β (b)−α(a)β (a)−

∫ b

a
β dα.

A similar argument using the lower sum proves the reverse inequality.
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The following theorem allows for the evaluation of Reimann-Stieltjes Integrals using the

method of Riemann Integration given that α has a continuous derivative α ′.

Theorem 4.9 ([1]). Assume f ∈ R on [a,b] and assume that α has a continuous derivative

α ′ on [a,b]. Then the Riemann integral
∫ b

a f (x)α ′(x)dx exists and we have

∫ b

a
f (x)dα(x) =

∫ b

a
f (x)α ′(x)dx.

Proof. Let g(x) = f (x)α ′(x) and consider a Riemann sum

S(P,g) =
n

∑
k=1

g(tk)∆xk =
n

∑
k=1

f (tk)α ′(tk)∆xk.

The same partition P and the same choice of tk can be used to form the Riemann-Stieltjes

sum

S(P, f ,α) =
n

∑
k=1

f (tk)∆αk.

Applying the Mean-Value Theorem, we can write

∆αk = α
′(vk)∆xk, where vk ∈ (xk−1,xk),

and hence

S(P, f ,α)−S(P,g) =
n

∑
k−1

f (tk)[α ′(vk)−α
′(tk)]∆xk.

Since f is bounded, we have | f (x)| ≤M for all x in [a,b], where M > 0. Continuity of α ′

on [a,b] implies uniform continuity on [a,b]. Hence, if ε > 0 is given, there exists a δ > 0

(depending on ε) such that

0≤ |x− y|< δ implies |α ′(x)−α ′(y)|< ε/(2M(b−a)). If we take a partition P′ε with
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norm ||P′ε ||< δ , then for any finer partition P we will have |α ′(vk)−α ′(tk)|< ε/[2M(b−a)]

in the preceding equation. For such P we therefore have

|S(P, f ,α)−S(P,g)|< ε/2.

On the other hand, since f ∈R(α) on [a,b], there exists a partition P′′ε such that P finer than

P′′ε implies

|S(P, f α)−
∫ b

a
f dα|< ε/2.

Combining the last two inequalities, we see that when P is finer than Pε = P′ε ∪P′′ε , we will

have |S(P,g)−
∫ b

a f dα|< ε , and this proves the theorem.



www.manaraa.com

33

Functions of Bounded Variation and Riemann-Stieltjes Integration

The variation of a function is defined as: Let φ : [a,b]→R. To measure how much φ wiggles

on an interval [a,b] set

V (φ ,P) =
n

∑
j=1
|φ(x j)−φ(x j−1)|

for each partition P= {x0,x1, . . . ,xn} of [a,b]. The variation of φ is defined by

Var(φ) = sup{V (φ ,P) : P is a partition of [a,b]}. Let [a,b] be a closed, bounded, non-

degenerate (a 6= b) interval and φ : [a,b]→ R. Then φ is said to be of bounded variation on

[a,b] if Var(φ)< ∞.

Remarks on Bounded Variation:([5])

a) If φ is continuously differentiable on [a,b], then φ is of bounded variation on [a,b].

Proof. Proof of (a) Let P= {x0,x1, . . . ,xn} be a partition of [a,b]. By the Extreme Value

Theorem, there is an M > 0 such that

|φ ′(x)| ≤M for all x ∈ [a,b]. Therefore it follows from the Mean Value Theorem that

for each k between 1 and n there is a point ck ∈ [xk−1,xk] such that

|φ(xk)−φ(xk−1)|= |φ ′(ck)|(xk− xk−1)≤M(xk− xk−1).

By telescoping, we obtain V (φ ,P)≤M(b−a) for any partition P of [a,b]. Therefore,

Var(φ)≤M(b−a).
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However, there exist functions of bounded variation which are not continuously differen-

tiable. An example of this is the indicator function which is of bounded variation but not

continously differentiable. It is not differentiable at the point of discontinuity.

b) If φ is monotone on [a,b], then φ is of bounded variation on [a,b].

Proof. Proof of (b) Let φ be increasing on [a,b] and P= {x0,x1, . . . ,xn} be a partition of

[a,b]. Then by telescoping,

n

∑
j=1
|φ(x j)−φ(x j−1)|=

n

∑
j=1

(φ(x j)−φ(x j−1)) = φ(xn)−φ(x0) = φ(b)−φ(a) =: M < ∞.

Thus, Var( f )≤M.

But, there exist functions of bounded variation which are not monotone. The function

φ(x) = sin(x) is of bounded variation on [0,2π] but is not monotone.

c) If φ is of bounded variation on [a,b], then φ is bounded on [a,b].

Proof. Proof of (c) Let x ∈ [a,b] and by defintion

|φ(x)−φ(a)| ≤ |φ(x)−φ(a)|+ |φ(b)−φ(x)| ≤ Var(φ).

Hence, by the triangle inequality,

|φ(x)| ≤ |φ(a)|+Var(φ).
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However, there exist bounded functions which are not of bounded variation. An example

of this is the function

y =

 sin(1
x ) x 6= 0

0 x = 0

which is bounded but not of bounded variation on the interval [0,b]. Given below is a graph

of the function.

Figure 5.1: Image

Bounded variation is important to the study of Riemann-Stieltjes Intgration due to the

following Theorem.

Theorem 5.1 ([6]). Suppose that f is continuous on [a,b] and that α is of bounded variation

on [a,b]. Then the Riemann-Stietjes Integral
∫ b

a f dα exists.

To prove this theorem, Jordan’s Theorem which is stated below will be used.

Theorem 5.2. Jordan’s Theorem.([6]) A function f is of bounded variation on [a,b] if and

only if it can be written as the difference of two bounded increasing functions on [a,b].

Proof. From Theorem 4.6 2 we can rewrite the integral with respect to α as the difference

of the integrals respect to α1 and α2 if α1−α2 = α . So by Jordan’s Theorem if α is of

bounded variation then α1−α2 = α . Thus α is the difference of two monotone increasing
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functions which can be evaluated separately and then subtracted. Let P be a partition of

[a,b]. Then

sup{L(P, f ,α)} ≤
∫ b

a
f dα ≤ inf{U(P, f ,α)}.

It is enough to show

sup{L(P, f ,α)}= inf{U(P, f ,α)}

to prove the Riemann-Stieltjes Integral exists. If α is constant on [a,b] then ∆α = 0 thus∫ b
a f dα = 0 as do the upper and lower sums. If α is not constant though let ε > 0, the

uniform continuity of f implies there exists δ > 0 such that if

|xi− xi−1|< δ , then Mi−mi <
ε

α(b)−α(a) . Therefore, if

|xi− xi−1|< δ ,

0≤ inf{U(P, f ,α)}− sup{L(P, f ,α)}=
n

∑
i=1

(Mi−mi)[φ(xi)−φ(xi−1)< ε.

Thus

inf{U(P, f ,α)}− sup{L(P, f ,α)}< ε

so the Riemann-Stieltjes Integral of f with respect to α exists.
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Stochastic Processes

A stochastic process is one in which there are many different ways the process could evolve

or different paths the process can take. An example of a stochastic process is the stock

market fluctuations.

Definition 6.1. A random variable is a variable that has a single numerical value, determined

by chance, for each outcome of a procedure.

A stochastic process is a collection of random variables

(Xt , t ∈ T ) = (Xt(ω), t ∈ T,ω ∈Ω),

where T is time and ω is a function of time defined on some space Ω .

Brownian Motion, an idea which first came about when the random movements of

particles suspended in a liquid, is a stochastic process. A real-valued stochastic process

B = B(t) : t ∈ R+ is a Brownian Motion if it satisfies the following properties.

(i) B(0) = 0.

(ii) B has a independent increments and for s < t, the increment B(t) - B(s) has a normal

distribution with mean 0 and variance t - s.

(iii) The paths of B are continuous.

Researchers would like to be able to evaluate an integral of the form

∫
∞

∞

f (t)dBt(ω),
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where f is a function or a stochastic process on [0,1] and Bt(ω) is a Brownian sample path.

This integral is in the form of a Riemann-Stieltjes Integral. It was previously stated in this

thesis the Riemann-Stieltjes Integral exists when f (t) and Bt(ω) are not disconinuous at the

same point from the same side and Bt(ω) has bounded variation. The latter requirement

though is not possible with Brownian sample paths. Brownian sample paths do not have

bounded variation. It has been found that a weaker requirement can be used to allow for

the evaluation of Riemann-Stieltjes Integrals with Brownian sample paths. The real-valued

function h on [0,1] is said to have bounded p-variation for some p > 0 if

sup
τ

n

∑
i=1
|h(ti)−h(ti−1)|p < ∞,

where the supremum is taken over all partition τ of [0,1]. (If p = 1, then h has bounded

variation) The Riemann-Stieltjes Integral exists if f has bounded p-variation and the function

Bt(ω) has bounded q-variation for some p > 0 and q > 0 such that p−1 +q−1 > 1. Not all

Riemann-Stieltjes integrals can be evaluated with respect to a Brownian sample path. An

example of this is the integral

I(B)(ω) =
∫ 1

0
Bt(ω)dBt(ω).

Brownian motion has bounded p-variation for p > 2, thus the condition of p−1 +q−1 > 1

fails. Thus the Riemann-Stieltjes Integral is limited in use with respect to stochastic

processes. [3]
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Applications of Riemann-Stieltjes Integration

In Probability Theory, the ability to evaluate the following integrals is often desired

∫ a

b
dF(α)

∫
B

dF(α)

and ∫ a

b
g(α)dF(α)

where F is a cummulative distribution function, a and b are real numbers, B is a Borel Set

and g : R∗→ R∗. The evaluation of such integrals is desired since the expected value of a

random variable X is given by

EX =
∫

∞

−∞

f dFx(T )

where Fx is the distribution function of X .

Definition 7.1. The expected value of a discrete random variable is denoted by E and it

represents the average value of the outcomes. It is obtained by finding the value of ∑(xP(x)).

For a continuous probability function this becomes E(x) =
∫

∞

−∞
x f (x)dx

Definition 7.2. A Borel set is any set that can be formed from open sets.

Definition 7.3. A random variable is a variable that has a single numerical value, determined

by chance, for each outcome of a procedure.A continuous random variable has infinitely

many values, and those values can be associated with measurements on a continuous scale
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without gaps or interuptions.

A discrete random variable will have jumps on a continuous scale.

A mixed random variable will have intervals where the variable is continuous and

intervals where the variable is discrete.

Definition 7.4. A probability distribution is a description that gives the probability for each

value of the random variable.

Properties of a Probability Distribution

a) ∑P(x) = 1 where x assumes all possible values

b) 0≤ P(x)≤ 1 for every individual value of x

A cummulative probability distribution is a monotone increasing function.

As was previously stated in this paper if g(α) = 1 then the Riemann Stieltjes Integral

is also a Riemann Integral and evaluated as such. If this is the case and B = (a,b] then all

three of these integrals are the same and a Riemann Integral can be used to evaluate all three.

The Riemann-Stieltjes Integral, though, allows there to be a standard process for evaluation

of such integrals regardless of the random variable being continuous, discrete or mixed. [2]

In Physics the Riemann-Stieltjes Integral is used in the following situation, consider

n-masses, each of mass mi, i = 1,2, . . . ,n, located along the x-axis at distances ri from the

origin with 0 < r1 < .. . < rn. The moment of inertia I, about an axis through the origin at

right angles to the system of masses is given by I = ∑
n
i=1 r2

i mi. This is the discrete case. If

instead we have a length of wire l along the x-axis with one end at the origin the moment of

Inertia is

I =
∫ l

0
x2

ρ(x)dx,

where for each x ∈ [0, l],ρ(x) equals the cross-sectional density at x. [4]
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Conclusion

The definition and properties of the Riemann-Stieltjes Integral have been given, with an

explanation of how to calculate the integral. The Riemann-Stieltjes Integral is a useful

mathematical tool when working with discrete and random variables simultaneously. It has

applications in physics and statistics, but is limited in its use with Stochastic processes.
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